Search results

Search for "vapor deposition" in Full Text gives 258 result(s) in Beilstein Journal of Nanotechnology. Showing first 200.

On the mechanism of piezoresistance in nanocrystalline graphite

  • Sandeep Kumar,
  • Simone Dehm and
  • Ralph Krupke

Beilstein J. Nanotechnol. 2024, 15, 376–384, doi:10.3762/bjnano.15.34

Graphical Abstract
  • transparent strain sensors. So far, the growth of specific grain boundaries in graphene has not been reported. Also, most research activities aim at the chemical vapor deposition (CVD) synthesis of monocrystalline graphene free of grain boundaries [10][11][12]. Methods to detect and visualize grain boundaries
PDF
Album
Full Research Paper
Published 08 Apr 2024

Determining by Raman spectroscopy the average thickness and N-layer-specific surface coverages of MoS2 thin films with domains much smaller than the laser spot size

  • Felipe Wasem Klein,
  • Jean-Roch Huntzinger,
  • Vincent Astié,
  • Damien Voiry,
  • Romain Parret,
  • Houssine Makhlouf,
  • Sandrine Juillaguet,
  • Jean-Manuel Decams,
  • Sylvie Contreras,
  • Périne Landois,
  • Ahmed-Azmi Zahab,
  • Jean-Louis Sauvajol and
  • Matthieu Paillet

Beilstein J. Nanotechnol. 2024, 15, 279–296, doi:10.3762/bjnano.15.26

Graphical Abstract
  • injection pulsed-pressure chemical vapor deposition (DLI-PP-CVD). Such samples are constituted of nanoflakes (with a lateral size of typically 50 nm, i.e., well below the laser spot size), with possibly a distribution of thicknesses and twist angles between stacked layers. As an essential preliminary, we
  • first reassess the applicability of different Raman criteria to determine the thicknesses (or layer number, N) of MoS2 flakes from measurements performed on reference samples, namely well-characterized mechanically exfoliated or standard chemical vapor deposition MoS2 large flakes deposited on 90 ± 6 nm
  • , where atomic layers are arranged in such way that the stacking between two adjacent layers corresponds to a twist angle of θ = 60°, and any Mo atom is sitting on top of two S atoms of the adjacent layers [18][19]. However, during the synthesis process (e.g., chemical vapor deposition (CVD) synthesis) or
PDF
Album
Supp Info
Full Research Paper
Published 07 Mar 2024

A combined gas-phase dissociative ionization, dissociative electron attachment and deposition study on the potential FEBID precursor [Au(CH3)2Cl]2

  • Elif Bilgilisoy,
  • Ali Kamali,
  • Thomas Xaver Gentner,
  • Gerd Ballmann,
  • Sjoerd Harder,
  • Hans-Peter Steinrück,
  • Hubertus Marbach and
  • Oddur Ingólfsson

Beilstein J. Nanotechnol. 2023, 14, 1178–1199, doi:10.3762/bjnano.14.98

Graphical Abstract
  • electron beam energy and current, the substrate material, the environment inside the deposition chamber, and the composition of the precursor [14][15][16][17]. Heretofore, various chemical vapor deposition (CVD) precursors have been applied for FEBID depositions. For gold nanostructures, these include, for
PDF
Album
Supp Info
Full Research Paper
Published 06 Dec 2023

Fragmentation of metal(II) bis(acetylacetonate) complexes induced by slow electrons

  • Janina Kopyra and
  • Hassan Abdoul-Carime

Beilstein J. Nanotechnol. 2023, 14, 980–987, doi:10.3762/bjnano.14.81

Graphical Abstract
  • . Metal bis(acetylacetonate) complexes are of interest for many thin film fabrication techniques (e.g., chemical vapor deposition [9], atomic layer epitaxy [10], or atomic layer etching [11]) and as precursors for carbon materials, such as carbon nanotubes and carbon onion particles [12], or metal oxide
PDF
Album
Full Research Paper
Published 26 Sep 2023

Isolation of cubic Si3P4 in the form of nanocrystals

  • Polina K. Nikiforova,
  • Sergei S. Bubenov,
  • Vadim B. Platonov,
  • Andrey S. Kumskov,
  • Nikolay N. Kononov,
  • Tatyana A. Kuznetsova and
  • Sergey G. Dorofeev

Beilstein J. Nanotechnol. 2023, 14, 971–979, doi:10.3762/bjnano.14.80

Graphical Abstract
  • Si3P4 phase. Also worth noting was that the synthesis of cubic Si3P4 NPs could be performed immediately after laser-induced or plasma-enhanced chemical vapor deposition of nanosilicon from the silane precursor (since the NPs obtained this way are readily hydrogenated). Additionally, there is preliminary
  • (reagent grade) were used for sol preparation; 40% hydrofluoric acid (pure) was used for etching. Si NPs were synthesized by laser-induced chemical vapor deposition using a silane precursor (the average particle diameter was 20 nm [41]). The NPs oxidized when stored in air, and the resultant mass fraction
PDF
Album
Supp Info
Full Research Paper
Published 26 Sep 2023

Control of morphology and crystallinity of CNTs in flame synthesis with one-dimensional reaction zone

  • Muhammad Hilmi Ibrahim,
  • Norikhwan Hamzah,
  • Mohd Zamri Mohd Yusop,
  • Ni Luh Wulan Septiani and
  • Mohd Fairus Mohd Yasin

Beilstein J. Nanotechnol. 2023, 14, 741–750, doi:10.3762/bjnano.14.61

Graphical Abstract
  • . To date, many researchers have shown promising results on the synthesis control of CNTs to produce tailored CNT morphologies and properties through conventional furnace-based methods. Progress in CNT synthesis processes has been achieved mostly using chemical vapor deposition (CVD). Various studies
PDF
Album
Full Research Paper
Published 21 Jun 2023

SERS performance of GaN/Ag substrates fabricated by Ag coating of GaN platforms

  • Magdalena A. Zając,
  • Bogusław Budner,
  • Malwina Liszewska,
  • Bartosz Bartosewicz,
  • Łukasz Gutowski,
  • Jan L. Weyher and
  • Bartłomiej J. Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 552–564, doi:10.3762/bjnano.14.46

Graphical Abstract
  • physical vapor deposition (PVD) methods have been tested to replace MS in coating GaN platforms with plasmonic metals. Pulsed laser deposition (PLD) is an interesting and still not fully explored alternative for the fabrication of SERS substrates [37][38]. Hence, our studies reported herein aimed to
  • . Results and Discussion Fabrication of GaN/Ag substrates GaN/Ag substrates were fabricated by Ag deposition on nanostructured GaN platforms using PLD and MS (Figure 1). In the first step, metal organic chemical vapor deposition (MOCVD)-grown GaN on sapphire epitaxial layers was exposed to photoetching
  • markedly different morphology, especially to the sharp edges and spikes. Materials and Methods Fabrication of GaN/Ag substrates Two physical vapor deposition methods, MS and PLD, were used to coat GaN platforms with Ag layers. The research aimed to compare the enhancement of the Raman signal on GaN/Ag SERS
PDF
Album
Full Research Paper
Published 03 May 2023

A novel approach to pulsed laser deposition of platinum catalyst on carbon particles for use in polymer electrolyte membrane fuel cells

  • Bogusław Budner,
  • Wojciech Tokarz,
  • Sławomir Dyjak,
  • Andrzej Czerwiński,
  • Bartosz Bartosewicz and
  • Bartłomiej Jankiewicz

Beilstein J. Nanotechnol. 2023, 14, 190–204, doi:10.3762/bjnano.14.19

Graphical Abstract
  • [27]. Direct deposition of PtNPs can be attained by the use of various physical vapor deposition techniques such as magnetron sputtering [28], sputtering [29], e-beam evaporation [30], dual ion-beam assisted deposition [31], and pulsed laser deposition (PLD) [27][32][33]. Previously, PLD has been used
PDF
Album
Supp Info
Full Research Paper
Published 02 Feb 2023

Combining physical vapor deposition structuration with dealloying for the creation of a highly efficient SERS platform

  • Adrien Chauvin,
  • Walter Puglisi,
  • Damien Thiry,
  • Cristina Satriano,
  • Rony Snyders and
  • Carla Bittencourt

Beilstein J. Nanotechnol. 2023, 14, 83–94, doi:10.3762/bjnano.14.10

Graphical Abstract
  • approach reported here allows for an easy synthesis of a rather high sensible platform. Alternatively, more simple approaches for the synthesis of SERS-based sensors, such as direct physical vapor deposition (PVD) coating of natural micro- or nanostructured materials have been reported. For example, the
PDF
Album
Supp Info
Full Research Paper
Published 11 Jan 2023

A TiO2@MWCNTs nanocomposite photoanode for solar-driven water splitting

  • Anh Quynh Huu Le,
  • Ngoc Nhu Thi Nguyen,
  • Hai Duy Tran,
  • Van-Huy Nguyen and
  • Le-Hai Tran

Beilstein J. Nanotechnol. 2022, 13, 1520–1530, doi:10.3762/bjnano.13.125

Graphical Abstract
  • via chemical vapor deposition were supplied by Vinanotech (Vietnam). Titanium tetrachloride (purity >99%) was purchased from Sigma-Aldrich (USA), and pure potassium hydroxide and potassium chloride (purity >85%) were provided from Merck (Germany). All other chemical reagents used in this study were of
PDF
Album
Full Research Paper
Published 14 Dec 2022

Studies of probe tip materials by atomic force microscopy: a review

  • Ke Xu and
  • Yuzhe Liu

Beilstein J. Nanotechnol. 2022, 13, 1256–1267, doi:10.3762/bjnano.13.104

Graphical Abstract
  • assembly methods, direct growth of carbon nanotubes by chemical vapor deposition (CVD) allows for increased bond strength between CNT tips and AFM probes. A pore growth method was used by Hafner et al. [42]. The method uses AFM imaging in contact mode to flatten the silicon tip, followed by hydrogen
  • performs well. Clark et al. [45] presented a novel scanning probe for mechanical and electronic characterization of probe microscopy. A newly developed controlled area plating method was used. The method uses microwave plasma to enhance the growth of carbon nanotubes in chemical vapor deposition. This
PDF
Album
Review
Published 03 Nov 2022

Design of a biomimetic, small-scale artificial leaf surface for the study of environmental interactions

  • Miriam Anna Huth,
  • Axel Huth,
  • Lukas Schreiber and
  • Kerstin Koch

Beilstein J. Nanotechnol. 2022, 13, 944–957, doi:10.3762/bjnano.13.83

Graphical Abstract
  • of structures that often do not correspond to the original wax type [20][42]. Due to the ring-shaped accumulation and the resulting pattern, this effect is called the “coffee drop effect” [47][48]. This undesirable effect can be avoided by the solvent-free process of physical vapor deposition (PVD
  • plants grown outdoors showed alterations in the wax layer (Supporting Information File 1, Figure S3). Macroscopically, vapor deposition with the wheat wax resulted in a white opaque homogeneous coating on the glass (Figure 4). SEM images showed three-dimensional, granularly recrystallized structures on
  • wetting properties as a natural leaf. This goal was achieved by vapor deposition with the medium amount of the wax extract. The surface coated in this way resembled the natural surface regarding all three studied wetting parameters (Figure 8). The chemical analysis had shown that the wax composition of
PDF
Supp Info
Full Research Paper
Published 13 Sep 2022

DNA aptamer selection and construction of an aptasensor based on graphene FETs for Zika virus NS1 protein detection

  • Nathalie B. F. Almeida,
  • Thiago A. S. L. Sousa,
  • Viviane C. F. Santos,
  • Camila M. S. Lacerda,
  • Thais G. Silva,
  • Rafaella F. Q. Grenfell,
  • Flavio Plentz and
  • Antero S. R. Andrade

Beilstein J. Nanotechnol. 2022, 13, 873–881, doi:10.3762/bjnano.13.78

Graphical Abstract
  • characterization utilizing field-effect transistors fabricated using single-layer graphene grown by chemical vapor deposition (CVD) and transferred to Si/SiO2 substrates. The wafers were purchased from Graphene Platform and we produced graphene transistors by conventional photolithography, following the procedures
PDF
Album
Supp Info
Full Research Paper
Published 02 Sep 2022

Optimizing PMMA solutions to suppress contamination in the transfer of CVD graphene for batch production

  • Chun-Da Liao,
  • Andrea Capasso,
  • Tiago Queirós,
  • Telma Domingues,
  • Fatima Cerqueira,
  • Nicoleta Nicoara,
  • Jérôme Borme,
  • Paulo Freitas and
  • Pedro Alpuim

Beilstein J. Nanotechnol. 2022, 13, 796–806, doi:10.3762/bjnano.13.70

Graphical Abstract
  • 4710-057, Portugal 10.3762/bjnano.13.70 Abstract Mass production and commercial adoption of graphene-based devices are held back by a few crucial technical challenges related to quality control. In the case of graphene produced by chemical vapor deposition, the transfer process represents a delicate
  • devices and applications [1][2][3]. Among the production methods, chemical vapor deposition (CVD) made substantial progress over the years and now guarantees high-quality standards for the growth of batches of graphene samples over wafer-scale areas [4][5][6]. This progress allowed for the fabrication of
PDF
Album
Supp Info
Full Research Paper
Published 18 Aug 2022

Reliable fabrication of transparent conducting films by cascade centrifugation and Langmuir–Blodgett deposition of electrochemically exfoliated graphene

  • Teodora Vićentić,
  • Stevan Andrić,
  • Vladimir Rajić and
  • Marko Spasenović

Beilstein J. Nanotechnol. 2022, 13, 666–674, doi:10.3762/bjnano.13.58

Graphical Abstract
  • delve into fundamental properties was augmented with an outlook towards potential applications [1]. Over the past decades, a great number of different methods for the synthesis of graphene and other 2D materials has been proposed, including micromechanical cleavage [2], chemical vapor deposition (CVD
PDF
Album
Full Research Paper
Published 18 Jul 2022

Revealing local structural properties of an atomically thin MoSe2 surface using optical microscopy

  • Lin Pan,
  • Peng Miao,
  • Anke Horneber,
  • Alfred J. Meixner,
  • Pierre-Michel Adam and
  • Dai Zhang

Beilstein J. Nanotechnol. 2022, 13, 572–581, doi:10.3762/bjnano.13.49

Graphical Abstract
  • CuPc as a Raman probe, because CuPc exhibits a large Raman scattering cross section and an extremely weak photoluminescence signal. A thin film of 5 nm of CuPc was deposited on the triangular MoSe2 flakes through thermal vapor deposition. Figure 1a shows a bright-field optical image of CuPc/MoSe2. From
  • characterization of CuPc molecules on MoSe2 flakes The MoSe2 flakes were received from SixCarbon Technology (Shenzhen), synthesized on a SiO2/Si substrate using chemical vapor deposition. An ultra-thin film of CuPc with a thickness of 5 nm is deposited on the MoSe2 samples by vacuum thermal deposition. At a
PDF
Album
Supp Info
Full Research Paper
Published 01 Jul 2022

Electrostatic pull-in application in flexible devices: A review

  • Teng Cai,
  • Yuming Fang,
  • Yingli Fang,
  • Ruozhou Li,
  • Ying Yu and
  • Mingyang Huang

Beilstein J. Nanotechnol. 2022, 13, 390–403, doi:10.3762/bjnano.13.32

Graphical Abstract
  • vertically on the substrate. The vertically aligned MWCNTs were prepared by various methods, such as the constriction of CNT growth by nanoscale pockets and DC plasma-enhanced chemical vapor deposition (PECVD), as shown in Figure 2c. Using the vertically aligned CNT switches provides a high density for
PDF
Album
Review
Published 12 Apr 2022

Tin dioxide nanomaterial-based photocatalysts for nitrogen oxide oxidation: a review

  • Viet Van Pham,
  • Hong-Huy Tran,
  • Thao Kim Truong and
  • Thi Minh Cao

Beilstein J. Nanotechnol. 2022, 13, 96–113, doi:10.3762/bjnano.13.7

Graphical Abstract
  • materials, preferably using two redox sites; (3) synthesizing other morphologies of SnO2 such as nanorods, nanotubes, or 3D structures to increase the specific surface area of the catalyst; (4) upscaling the syntheses and using other synthesis approaches such as sol–gel or chemical vapor deposition to form
PDF
Album
Review
Published 21 Jan 2022

Sputtering onto liquids: a critical review

  • Anastasiya Sergievskaya,
  • Adrien Chauvin and
  • Stephanos Konstantinidis

Beilstein J. Nanotechnol. 2022, 13, 10–53, doi:10.3762/bjnano.13.2

Graphical Abstract
  • , Czech Republic 10.3762/bjnano.13.2 Abstract Sputter deposition of atoms onto liquid substrates aims at producing colloidal dispersions of small monodisperse ultrapure nanoparticles (NPs). Since sputtering onto liquids combines the advantages of the physical vapor deposition technique and classical
  • (Figure 1). In 1974, Yatsuya et al. used a liquid as a substrate during a physical vapor deposition (PVD) experiment. They thermally evaporated metals in vacuum onto silicon oil for NP production [9]. After the pioneering experiments of Yatsuya et al., depositions onto liquids were not mentioned in
  • . These chemical methods can be divided into two major techniques, namely chemical vapor deposition (CVD) with liquid-phase synthesis and colloidal synthesis. In general, the colloidal synthesis of NPs is highly acclaimed due to its versatility [16]. So-called bio-assisted methods, biosynthesis, or green
PDF
Album
Supp Info
Review
Published 04 Jan 2022

Chemical vapor deposition of germanium-rich CrGex nanowires

  • Vladislav Dřínek,
  • Stanislav Tiagulskyi,
  • Roman Yatskiv,
  • Jan Grym,
  • Radek Fajgar,
  • Věra Jandová,
  • Martin Koštejn and
  • Jaroslav Kupčík

Beilstein J. Nanotechnol. 2021, 12, 1365–1371, doi:10.3762/bjnano.12.100

Graphical Abstract
  • Sciences, Chaberská 1014/57, 182 51 Prague 8, Czech Republic 10.3762/bjnano.12.100 Abstract Chemical vapor deposition was applied to synthetize nanostructured deposits containing several sorts of nanoobjects (i.e., nanoballs, irregular particles, and nanowires). Analytical techniques, that is, high
  • . Keywords: chemical vapor deposition; chromium germanide; nanostructured materials; nanowire; resistivity; Introduction Metal silicides and germanides belong to an extensively studied group of materials offering a wide variety of properties to meet various requirements in battery, optical, and electronic
  • effort to prepare a Cr/Ge deposit in a nanostructured form. Using chemical vapor deposition (CVD), we succeeded to synthesize deposits containing CrGex NWs. Their structure was elucidated and measurements of individual NWs were carried out to determine their electrical resistivity. Results and Discussion
PDF
Album
Supp Info
Letter
Published 07 Dec 2021

Irradiation-driven molecular dynamics simulation of the FEBID process for Pt(PF3)4

  • Alexey Prosvetov,
  • Alexey V. Verkhovtsev,
  • Gennady Sushko and
  • Andrey V. Solov’yov

Beilstein J. Nanotechnol. 2021, 12, 1151–1172, doi:10.3762/bjnano.12.86

Graphical Abstract
  • working chamber. Nowadays, FEBID permits the fabrication of nanostructures with sizes down to a few nanometers, which is similar to the size of the incident electron beam [7]. To date, FEBID mainly relies on precursor molecules developed for chemical vapor deposition (CVD), a process mainly governed by
PDF
Album
Full Research Paper
Published 13 Oct 2021

Assessment of the optical and electrical properties of light-emitting diodes containing carbon-based nanostructures and plasmonic nanoparticles: a review

  • Keshav Nagpal,
  • Erwan Rauwel,
  • Frédérique Ducroquet and
  • Protima Rauwel

Beilstein J. Nanotechnol. 2021, 12, 1078–1092, doi:10.3762/bjnano.12.80

Graphical Abstract
  • -roll techniques and chemical vapor deposition, both industrially viable techniques, are capable of producing 30 inch wafers of graphene, thereby demonstrating the viable upscaling of its production [41]. Other carbon-based nanomaterials such as SWNT have also been employed as current-spreading layers
PDF
Album
Review
Published 24 Sep 2021

Revealing the formation mechanism and band gap tuning of Sb2S3 nanoparticles

  • Maximilian Joschko,
  • Franck Yvan Fotue Wafo,
  • Christina Malsi,
  • Danilo Kisić,
  • Ivana Validžić and
  • Christina Graf

Beilstein J. Nanotechnol. 2021, 12, 1021–1033, doi:10.3762/bjnano.12.76

Graphical Abstract
  • -black, crystalline form, known as the mineral stibnite [7][8]. Sb2S3 nanomaterials with a diverse morphology and a broad distribution of band gap values were synthesized by solvothermal [9], hydrothermal [10], and sonochemical [11] approaches, as well as by chemical bath [12] and chemical vapor
  • deposition [13] methods. Up to now, the syntheses of Sb2S3 nanomaterials lack sufficient control of the growth conditions. The result are nanoparticles of which the size, shape, and crystallinity can only be tuned to a limited extent. However, for several applications, such as electronic circuits [14], it is
PDF
Album
Supp Info
Full Research Paper
Published 10 Sep 2021

Molecular assemblies on surfaces: towards physical and electronic decoupling of organic molecules

  • Sabine Maier and
  • Meike Stöhr

Beilstein J. Nanotechnol. 2021, 12, 950–956, doi:10.3762/bjnano.12.71

Graphical Abstract
  • physical and electronic decoupling have been developed in view of fundamental studies as well as application in devices. Ultrathin semiconducting or insulating decoupling layers can be epitaxially grown as mono- and multilayers on many metallic substrates by either physical or chemical vapor deposition
PDF
Editorial
Published 23 Aug 2021

9.1% efficient zinc oxide/silicon solar cells on a 50 μm thick Si absorber

  • Rafal Pietruszka,
  • Bartlomiej S. Witkowski,
  • Monika Ozga,
  • Katarzyna Gwozdz,
  • Ewa Placzek-Popko and
  • Marek Godlewski

Beilstein J. Nanotechnol. 2021, 12, 766–774, doi:10.3762/bjnano.12.60

Graphical Abstract
  • environmentally friendly solar cells are cells based on zinc oxide (ZnO). ZnO thin films can be obtained using many technologies, including molecular beam epitaxy, RF magnetron sputtering, pulsed laser deposition, chemical vapor deposition, and atomic layer deposition (ALD) [3]. ALD attracts the attention of many
PDF
Album
Full Research Paper
Published 21 Jul 2021
Other Beilstein-Institut Open Science Activities